Supplementary material

Perchlorates on Mars enhance the bacteriocidal effects of UV light Jennifer Wadsworth^{1*}, Charles S Cockell¹

¹UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH10 4EP, UK

Email: j.l.wadsworth@sms.ed.ac.uk

Supplementary Fig. S1: Dark controls for M9 and perchlorate.

Bacillus subtilis in M9 medium, covered to control for light and sampled at given time points. M9 = cells in M9 medium; M9 + perchlorate = cells in M9 containing $0.6 \text{ wt}\% \text{ Mg}(\text{ClO}_4)_2$. Error bars are + s.d. (n = 3).

Supplementary Fig. S2: Modelled Mars UV irradiance vs. measured Mars chamber UV irradiance 200-400 nm.

Mars UV irradiance $(mW/m^2/nm)$ was calculated using the model from Cockell et al.¹ with following parameters: OD = 1 (τ = 1.0); Sunlight angle 45°. Irradiance from polychromatic Xe lamp was measured in the Mars Chamber².

Supplementary Fig. S3: UV spectrophotometric absorbance of irradiated perchlorate: 6 wt% $Mg(ClO_4)_2$ irradiated with UVC.

UV-irradiated perchlorate (λ = 254nm) in sterile, distilled water; Absorbance at 260, 290 and 360 nm; Blanks used contained 6 wt% perchlorate.

Supplementary Fig. S4: Effects of low concentrations of UVC-irradiated $Mg(ClO_4)_2$ on cell viability, 60 seconds exposure.

UV = UVC irradiated control; ClO_4 - = $Mg(ClO_4)_2$ at given wt%.

p < 0.05 was considered statistically significant (*); error bars are + s.d. (n = 3).

Supplementary Fig. S5: Effects of low and high concentrations of hydrogen peroxide on cell viability; irradiated and dark controls.

UV = irradiated with UV (λ = 254 nm); dark = covered samples; HP = hydrogen peroxide at given molarity. Error bars are + s.d. (n = 3).

Supplementary Table S1: Summarized numerical results of viability of irradiated *B. subtilis* cells under various Martian analogue conditions.

Table contains numerical results from figures in the main paper. Results are in the unit N/N₀ [%], with 'N' as the number of surviving cells after a given treatment and 'N₀' is the number of cells in the starting concentration calculated using the average of triplicates. The results for each condition are paired with the results from the respective UV-irradiated control ($\lambda = 254$ nm, unless stated) and grouped into shaded or white rows. 'Mg-perchlorate' = Mg(ClO₄)₂ at given wt%; 'Ca-perchlorate' = Ca(ClO₄)₂ at given wt%; 'Na-perchlorate' = NaClO₄ at given wt%; Sulfate = MgSO₄ at given wt %; H = 1 g/L Hematite (5 µm grain size); HP = hydrogen peroxide at final concentration of 10 mM; polychromatic UV = 200-400 nm; n.a. = not applicable.

	Irradiati	ion time
Conditions	30 s	60 s
UV control	1.53	0
UV + 0.6 wt% Mg- perchlorate	0	0
UV control	45.86	22.22
UV + 0.6 wt% Mg- perchlorate in rock analogue	26.67	2.90
UV control	n.a.	0.12
UV + 0.6 wt% Mg- perchlorate, anaerobic liquid system	n.a.	0
UV control	n.a.	8.23
UV + 0.6 wt% Mg- perchlorate, anaerobic rock analogue	n.a.	0.85
UV control	0.36	0.15
UV + 1 wt% Mg-perchlorate	0.003	0
UV + 2.5 wt% Mg- perchlorate	0.003	0

UV + 5 wt% Mg-perchlorate	0	0
UV control	3.93	0
UV + 0.6 wt% Caperchlorate	0	0
UV + 0.6 wt% Naperchlorate	0.09	0
UV control (16 x less irradiance)	5.91	1.45
UV + 0.6 wt% Ca- perchlorate (16 x less irradiance)	7.36	0.54
UV + 0.6 wt% Na- perchlorate (16 x less irradiance)	6.07	0.69
UV control	n.a.	2.70
UV + 30 wt% sulfate	n.a.	2.41
UV + 0.6 wt% Mg- perchlorate + 30 wt% sulfate	n.a.	2.58
UV control	3.34	2.26
UV + H	4.61	3.10
UV + HP	2.33	1.20
UV + 0.6 wt% Mg- perchlorate	2.37	1.39
UV + H + HP	3.36	0.84
UV + H + 0.6 wt% Mg- perchlorate	4.74	1.44
UV + HP + 0.6 wt% Mg- perchlorate	4.08	0.79
UV + H + HP + 0.6 wt% Mg-perchlorate	4.16	0.21
UV control	1.70	1.27
UV + 0.6 wt% Mg- perchlorate at 4°C	3.32	1.69

	1 min	2 min
UV control	1.43	0.09

UV + 0.6 wt% Mg-	1.31	0.008
perchlorate at 4°C		

	3 min	4 min
UV control	0	0
UV + 0.6 wt% Mg- perchlorate at 4°C	0	0

	10 s
Polychromatic UV control	3.13
Polychromatic UV + 0.6 wt% Mg-perchlorate	0.29

Supplementary references

- [1] Cockell. C. *et al.* The ultraviolet environment of Mars: Biological implications past, present, and future. *Icarus* **146**, 343-359 (2000).
- [2] Martin D., Cockell C. S. PELS (Planetary Environmental Liquid Simulator): A new type of simulation facility to study extraterrestrial aqueous environments. *Astrobiology* **15**, 111-8 (2015).